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Abstract 

Collagen implants are widely used in clinical practice and are an active area of 

research.  The continued development of collagen-based implants often relies on 

histological techniques to fully evaluate the host response post implantation.  These 

destructive, end-point analyses limit the rate that data can be obtained from samples.  

Magnetic resonance imaging has the potential to non-invasively monitor the remodeling 

of collagen scaffolds.  In this study, scaffolds prepared from insoluble bovine collagen, 

with varied and predictable tissue responses were implanted in rats and evaluated using 

both histological and MRI techniques.  Treatment of scaffolds with a carbodiimide 

crosslinker was found to slow the degradation and cellular infiltration into the scaffolds 

compared to uncrosslinked scaffolds.  Angiogenesis was observed in core regions of 

crosslinked scaffolds, but not uncrosslinked scaffolds.  Conjugation of chondroitin sulfate 

to the collagen scaffolds in combination with crosslinking improved both the cellular 

infiltration and angiogenesis compared to uncrosslinked and crosslinked scaffolds.  

Correlations between histology and MRI analyses showed that statistically significant 

relationships existed between cellular density, void area, T2 and apparent diffusion 

coefficient (ADC) measurements demonstrating that MRI is sensitive to specific 

remodeling parameters.  Understanding the relationship between histology and MRI 

parameters may be used to help guide the interpretation of MRI data as well as to reliably 

detect changes within the implants using the MRI data alone, reducing the need for 

scaffold harvesting and destructive testing. 
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1 Introduction 

Medical technology to repair or replace damaged tissues has been greatly 

influenced by the emergence of tissue engineering and regenerative medicine.  Implants 

that enhance the healing process, by providing a provisional cell scaffold have become a 

significant focus of biomedical research and an active area of research. 

The continued improvement of implantable tissue engineering devices depends on 

the ability to collect relevant data to assess the performance of the implant.  During the 

development of implants, researchers and clinicians must evaluate the functionality of the 

implant and the surrounding tissue response.  Current data collection methods to evaluate 

critical parameters of implant performance are commonly limited by invasive techniques, 

such as histological analyses of explants.  These destructive, end-point analyses limit the 

rate that data can be obtained from samples and increase the degree of statistical error 

associated with sample to sample variability in time course studies. 

Magnetic Resonance Imaging (MRI) has become an indispensable diagnostic tool 

in the clinical setting for characterizing pathologies, such as stroke[1] and tumors,[2] due to 

its sensitivity to changes in water content and the particular water environment.  This tool 

is used to monitor soft tissues by measuring vascularity, cellularity and water diffusion.  

We hypothesize that MRI can be used as an enabling technology to monitor and assess 

implants and to facilitate high-throughput analysis of tissue engineered devices, by 

noninvasively providing the same information as histological techniques.  This would 

provide researchers the ability to study implants without having to destroy them. 

Collagen is a widely used implant biomaterial used in many tissue engineering 

devices.  Artificial skin equivalents[3, 4] vascular grafts,[5] meniscus repairs,[6] drug 
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delivery devices[7] are all research areas where the possibility of using collagen is being 

explored, or where actual collagen-based devices are available on the market and in 

clinical use.  The highly conserved structure of collagen across species, which gives rise 

to its inherent biocompatibility, as well as its tolerance for certain manufacturing 

techniques, makes collagen a widely used biomaterial and a natural choice for this study. 

The current methods for evaluating implants, in the majority of cases reported in 

the literature, rely on predefined, semi-quantitative scales.  Blinded pathologists score 

tissue sections using a pre-defined scale for parameters that are relevant to the particular 

study.  This usually includes parameters such as the relative numbers of cells and their 

type, the foreign body reaction, angiogenesis within the implant and area of affected 

tissue surrounding the implant.  These measurements provide an easy metric to compare 

the relative differences in tissue response between types of implants but are difficult to 

correlate with MRI measurements because the scale is usually arbitrary.  For this study 

quantitative histological techniques were developed to avoid the use of pre-defined 

scales. 

In this study, scaffolds with varied and predictable responses were implanted 

subcutaneously in rats and evaluated using quantitative histological techniques to 

characterize the tissue response.  Concurrently, implants were imaged using MRI to 

observe changes in these data with increasing implantation time.  Histological 

measurements were correlated with MRI data to determine which parameters provide the 

best assessment of the implant in terms of degradation, cellular density and angiogenesis. 

A wide range of tissue responses were observed by measuring changes in cellular 

density, blood vessel density and void areas based on differences in crosslinking 
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treatment.  Statistically significant correlations between the histology and MRI data were 

found, showing that MRI can indeed be used to monitor changes within the collagen 

scaffolds. 

The correlation data will be used to help guide the interpretation of future MRI 

data so that studies may be able to reliably detect changes within the implants using the 

MRI data alone, reducing the need for scaffold harvesting.  Understanding the 

relationship between histology and MRI parameters will eventually allow for the 

monitoring of implants in a clinical setting, preventing unnecessary surgical revisions or 

alerting clinicians that a change in treatment is required before complete failure of the 

implant. 
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2 Background 

The development of a noninvasive technique to monitor collagen scaffold 

implants requires an understanding of the implants, their interactions with the 

surrounding tissue, and the proposed imaging modalities.  Selected methods to form the 

initial shape and structure of the implant as well as the methods used to biochemically 

tailor the implant for specific applications are reviewed to provide an understanding of 

the nature of the implant.  The biological responses to implantation and the methods used 

to evaluate the implants are also discussed.  Finally, the fundamental physics of MRI that 

give rise to the various parameters is briefly presented to provide an understanding of the 

underlying principles.  Previous MRI studies to evaluate implants and their results are 

also presented. 

2.1 Collagen Matrix Fabrication 
Collagen is well documented as a biomaterial for medical applications.  Collagen 

implants are used for medical devices for applications including drug delivery, wound 

dressings, tissue and bone fillings, dental repair, and vascular defects.[8,9,7,10,11]  Part of 

collagen’s wide applicability is due to the many forms that collagen can be crafted into 

and its excellent biocompatibility.  As a major component of the extracellular matrix 

(ECM) in higher mammals, cells recognize and respond to the biochemical surface 

features of collagen in a manner that closely emulates a native wound healing response.  

Furthermore, these biochemical features can be modified to suit the specific application 

either by incorporating biologically active molecules or by chemically modifying the 

implant.  The material is easily remodeled and integrated into the surrounding tissue via 

native enzymatic pathways, followed by new collagen synthesis by the host.  Collagen 
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scaffolds are of particular interest because of their suitability as cell-based scaffolds.[12]  

In addition to the biochemical benefits of collagen, the physical structure of scaffolds can 

be controlled to suit particular applications.  The high void volume and interconnected 

pore structure provide space for cellular infiltration and transport of nutrients and waste 

through the scaffold.[9]  For example, to create functional dermal analogs, scaffolds must 

be fabricated with average pores sizes between 20 and 125 μm.[13]  Additionally, collagen 

is readily available from many natural sources. 

2.1.1 Lyophilization 
Many techniques have been developed to control the size of the pores and to 

achieve the inter-connected pore structure necessary for cellular infiltration and mass 

transport within implantable scaffolds.  These include solvent-casting, particulate-

leaching, gas foaming, phase separation, fiber meshes/fiber bonding, melt molding and 

freeze drying.[14]  However, with the exception of gas foaming and freeze drying, these 

techniques require harsh organic solvents that limit their use to the fabrication of 

synthetic materials.  These techniques also create closed or dead-end pores rather than the 

desired interconnected pore structure.  Collagen scaffolds are most commonly prepared 

using a freeze drying, or lyophilization, process. 

Freeze drying is performed by freezing a dispersion of insoluble collagen 

prepared in a weakly acidic solution.  The formation of ice crystals forces collagen to 

localize between the crystals creating an interpenetrating network of collagen and ice 

crystals.  The ice is then sublimated, leaving behind a pore structure that mirrors the ice 

formation.[15]  Controlling the freezing conditions allows the pore organization to be 

precisely controlled.[15,16]  During the freezing process the thermal gradients within the 

 5



www.manaraa.com

scaffolds lead to distinct freezing lines, particularly on the side of the scaffold not 

exposed to the atmosphere, sometimes referred to as the “pan-side.”  These freezing lines 

are oriented by the thermal gradient.  The situation is further complicated by changes in 

thermal gradients as the temperature of the dispersion changes.  These cause changes in 

the orientation of the freezing lines and also contribute to the heterogeneity in the 

scaffold. 

An additional source of scaffold heterogeneity is the creation of a 

morphologically distinct “skin” layer at the surface of the sponge exposed to the 

surrounding atmosphere.  This layer develops due to greater solvent evaporation at the 

dispersion-air interface than within the dispersion.[17]  The greater concentration of 

collagen at the surface creates pore sizes that are generally smaller compared to pores 

found deeper in the sponge.  This layer of different pore sizes effects mass transport 

through the sponge as well as cellular attachment and infiltration.[15]  Careful attention 

will need to be given to these processes to ensure the sponges are created with 

biologically functional pore sizes.  For these studies, the scaffolds should be as 

homogenous as possible to simplify the analyses. 

2.1.2 Crosslinking 
In addition to manipulating the physical structure of sponges, chemical techniques 

have been developed to enhance the degradation rate and the biofunctionality of sponges 

to further tailor them to specific applications through biochemical modifications. 

The particular environment into which the sponge will be implanted can vary 

greatly.  For example, in a burn wound where a collagen sponge would be used as a skin 

graft, there are high concentrations of proteolytic enzymes.[18]  These enzymes degrade 
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the sponge faster than if the sponge is placed in a bony defect to guide osteoblast activity.  

It is often the case that the collagen is degraded faster than would be desired for optimal 

healing due to the fact that collagen is prevalent in the body and therefore susceptible to a 

large number of enzymes that efficiently degrade foreign material.  Various techniques 

have been developed to modify collagen sponges so that their resistance to degradation is 

appropriate for the particular implant environment or application.  The most common 

method for increasing the degradation resistance of scaffolds is to introduce additional 

chemical bonds between the collagen molecules, termed crosslinks.  Similarly, the tensile 

strength of the sponge and other mechanical properties can be increased by crosslinking.  

Crosslinking also believed to reduce the immunogenicity of the collagen by masking 

certain antigens, allowing for xenogenic collagen to be implanted without causing a 

chronic immune response.[19]  These bonds can be formed using physical or chemical 

strategies.  Physical methods do not introduce exogenous chemicals that may remain 

within the scaffold and detrimentally influence the biological response post-implantation.  

However, the degree of crosslinking can be challenging to control, and other effects, such 

as changes in wettability, are often deleterious.  Chemical crosslinking provides a greater 

control and residual chemicals can be removed by diligent rinsing after the cross-linking. 

Chemical crosslinking methods usually involve the use a bifunctional chemical 

agent that reacts with two collagen molecules, at two different sites, to create a bond 

between them by becoming incorporated into the chemical linkage.  Ideally the bonds 

formed should be irreversible and stable.  The chemicals that have been used previously 

to create crosslinks are glutaraldehyde, formaldehyde, polyepoxy compounds, acyl azide, 

carbodiimides, hexamethylene diisocyanate and chromium tanning.[7,20]  Exceptions to 
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the bifunctional nature of most crosslinkers are carbodiimides, which only facilitate the 

formation of bonds without actually becoming part of the linkage.[7]  Only carbodiimides 

are discussed in detail here as this is the primary method employed for these studies.  For 

a complete review of collagen crosslinking see Friess[7] and Khor.[20]

2.1.2.1 Carbodiimides 
The principle advantage of using carbodiimides is the molecules are not required 

to be bifunctional and highly reactive to create the stabilizing bonds.[7]  This results in 

more predictable reactions and fewer unwanted, side reactions.  The most common 

chemical used in the class of carbodiimides to crosslink collagen is 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC).  EDC is widely used to 

conjugate proteins in many biotechnology processes.[21]  The molecule activates the 

carboxylic acid side groups of proteins, usually aspartic and glutamic acid residues in the 

case of collagen, which then react with the amine groups of other polypeptide chains to 

create amide bonds.[22]  The mechanism for this reaction is shown in Figure 1. 

Figure 1: EDC crosslinking mechanism 
Adapted from [23] 

 8



www.manaraa.com

Crosslinking is performed in a mildly acidic environment to provide excess 

protons to initiate the reaction.  The specific pH of the reaction solution has been shown 

to effect the type of crosslinking that occurs.[24]  Optimization studies have found a pH of 

5.0-5.5 to be most effective.[24,25]  Due to the unstable amine reactive intermediate shown 

in Figure 1, the conditions of crosslinking have to be very carefully controlled to 

minimize unwanted side-products.  Specifically, the hydrolysis of the ester bond to 

produce the original carboxylic group on the protein and the subsequent alcohol 

substitution on the second imide bond, serve only to deactivate the crosslinker.  To 

prevent this, N-hydroxysuccinimide (NHS) is added to the 

reaction solution.[25,26]  The structure of NHS is shown in 

Figure 2.  This compound is more reactive than water and 

activates the ester bond before it is hydrolyzed.  The 

activated ester can then react with the amine group on an 

adjacent collagen molecule to create the crosslink. 
Figure 2: Structure of n-
hydroxysuccinimide 
Adapted from [27] 

Comparable crosslinking densities to 

glutaraldehyde, as measured by shrinkage or denaturation temperature, have been 

obtained using EDC.[28,25]  Increased compressive stiffness for cartilage implants[29] and 

reduced calcification[30] have also been demonstrated with EDC crosslinking compared to 

glutaraldehyde treatment.[29]  Furthermore, calcification of EDC treated implants is much 

less than glutaraldehyde implants post implantation.[28,30] 

EDC is limited by the number of amine groups available for reaction on the 

collagen molecule.[31]  The repeating tripeptide, Gly-X-Y (where X and Y are most 

frequently proline and hydroxyproline respectively), which makes up collagen, and the 

 9



www.manaraa.com

tightly wound helical structure cause the number of available amine to be approximately 

30 groups per 1000 residues.[32]  The number of available carboxylic acid groups is 

greater, at approximately 120 groups per 1000 residues. 

A significant advantage of EDC crosslinking over other crosslinking methods is 

that it can be used in predictable manner to directly conjugate other proteins to the 

collagen matrix during the crosslinking treatment.  Frequently, researchers have 

attempted to direct cellular activity by incorporating specific ECM molecules into the 

matrix that cells will recognize.  The EDC molecule will react with proteins in solution 

and covalently bond them to available collagen molecules.  This strategy has been used to 

conjugate glycosaminoglycans (GAGs), which have been shown to influence fibroblast 

behavior, to the collagen matrix to improve biocompatibility.[33, 34]  The mechanism for 

this is shown in Figure 3.  This method could be used to attach a variety of molecules to 

the collagen matrix such that they are presented in a biological functional conformation, 

Figure 3: Conjugation of glycosaminoglycan to collagen using EDC 
Adapted from [26]
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provided they have a carboxylic group that can be modified without changing the 

bioactivity of the molecule. 

In this project, the ability to modify the scaffold to elicit different tissue responses 

will be utilized to create scaffolds with greatly varied yet predictable responses.  Large 

differences in the responses to the implant will increase the likelihood of discerning these 

tissue differences with MRI.  Previous studies examining the effects of different 

modifications to collagen matrices on the host responses are described below. 

2.1.3 Influence of Glycosaminoglycans 
Glycosaminoglycans are a class of ECM components that modulate cellular 

responses to scaffolds.  In physiological environments, glycosaminoglycans are present 

as side chains attached to 

larger proteoglycans.[34]  

The different hexuronic 

acids and hexosamine 

molecules link together in 

disaccharide repeating 

units with various 

sulfation patterns to create 

a wide variety of proteins 

that precisely direct 

various cell functions,[35] see Figure 4.  Cells attach to these proteins via integrins that 

initiate a signaling cascade within the cell that influence the cellular behavior. 

Figure 4: GAG function in ECM 
Adapted from Sasisekharan [35]
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Commonly studied glycosaminoglycans used in tissue engineering include 

heparin, heparan sulfate, dermatan sulfate, chondroitin sulfate, hyaluronan and hyaluronic 

acid.[36]  Increased fibroblast migration with the use of hyaluronate and chondroitin 

sulfate have been reported.[33]  Reduced foreign body reactions to collagen matrices with 

conjugated chondroitin sulfate and heparan sulfate have been demonstrated in 

subcutaneous implants.[37]  The use of collagen-GAG copolymers, which contain 

chondroitin sulfate, has also been studied extensively for use as skin regeneration 

templates.[13]

The ability to incorporate glycosaminoglycans into collagen scaffolds can be used 

to control the cellular behavior both in vitro and in vivo.  This approach will create 

significant differences in the tissue responses to the implants maximizing the likelihood 

of detecting these differences using MRI. 

2.2 Collagen Matrix Implantation 
Preliminary in vivo studies of various collagen matrices are most commonly 

performed using subcutaneous implantations, usually within dorsal compartments of rats.  

This is due to the ease of surgery for both placing and retrieving the implant.  

Subcutaneous implantations also facilitate MRI evaluation, as it allows for surface coils 

to be used instead of volume coils that generally have lower signal to noise ratios. 

Previous studies have extensively characterized tissue responses in this implant 

environment, making it a suitable choice for these studies.[38,39]  Tissue responses to 

implants are challenging to analyze quantitatively due to the complexity of living systems.  

Depending on the particular interest and aims of the researcher, different parameters may 

be measured.  These include the number and type of cells around and within the implant, 

 12



www.manaraa.com

the activity of these cells in terms of protein synthesis and extracellular matrix (ECM) 

remodeling, as well as changes to the implant itself. 

2.2.1 Physiological Outcomes 
The numerous parameters that can be measured after the implantation of a 

medical device make the complete characterization of the tissue response challenging.  

Certain responses, such as the production of a discrete protein or cellular migration, may 

be more important to some types of implants.  The development of a noninvasive 

technique to monitor implants should be as general as possible to maximize its utility for 

various applications.  This thesis will concentrate on physiological outcomes that are 

fundamental to the success of all types of artificial tissue constructs.  Biocompatibility, 

degradation rates and angiogenic potential are all critical design criteria for implants that 

a noninvasive technique should be able to monitor.  These parameters have been 

extensively explored and consequently are well characterized in the literature. 

2.2.1.1 Biocompatibility 
The biocompatibility of an implant is a critical factor that must be addressed 

during the design and development.  The initial inflammation caused by the presence of 

the implant, a foreign material, and surgical implantation, is important to assess.  This 

response has a direct effect on the later tissue response as the wound healing cascade 

progresses.  The type and number of cells that are recruited to the implant environment, 

as part of the inflammatory response, have been previously studied to determine the 

biocompatibility of collagen implants.[40,41,42]

Polymorphonuclear cells (i.e. neutrophils) and monocytes/macrophages are the 

cells most commonly associated with foreign body induced inflammation.  Chemotactic 
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factors released during the inflammation recruit reparative cells, including fibroblasts, to 

the wound environment.[10]  A schematic of the evolution of cells surrounding the implant 

is shown in Figure 5.  These cells are usually identified and counted using a histological 

stain, such as hemotoxylin and eosin or toluidine blue, where the shape of the nucleus can 

be used to identify the cell. 

Figure 5: Evolution of cell type surrounding implant 
Adapted from [10]

Manual counting of individual cells in histological sections of tissue explants is 

prohibitively time consuming.  Semi-quantitative assessments have been previously 

reported by scoring randomly selected fields of view (FOV) for the number of cells 

within in the implant based on an arbitrarily defined scale.  These measurements are 

taken blinded by multiple researchers. 

2.2.1.2 Angiogenesis 
The ability to support angiogenesis has been identified as a critical factor for the 

success of tissue engineered scaffolds and consequently has received considerable 
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attention.[43]  Cells cannot survive further than a few hundred micrometers from the 

nearest capillary.  The regeneration of tissues larger than this requires vasculature to 

support viable cell populations within the scaffold.  Angiogenesis can be measured by 

quantifying the number of vessels within the implant using a variety of methods.  

Staining for markers specific to the microvasculature in explants allows capillaries to be 

identified.  Antibodies directed against the basal lamina marker collagen IV, platelet 

endothelial cell adhesion molecule-1 (CD31 or PECAM-1) and von Willebrand factor 

have all been used previously.[44]  Perfusion measurements using microangiography[45], 

computed tomography[46] and magnetic resonance micro-angiography[47] have been 

described to measure blood flow in vivo.  Alternatively MRI data that could correlate 

with the histological staining data, are in vivo measurements with gadolinium-based 

contrast agents such as gadopentate, gadoteridol and gadodiamide that are used to 

measure the perfusion of blood in a specific region of interest.[48]

2.2.1.3 Degradation 
Tissue scaffolds are designed as temporary constructs that are slowly degraded 

and replaced by native tissue.  The scaffold should persist long enough to facilitate new 

tissue ingrowth and wound healing, but should not persist and impede remodeling and 

neotissue regeneration.  The rate of biodegradation must be carefully controlled to 

achieve optimal wound healing.[13]

The degradation extent of collagen scaffolds can be measured using a variety of 

methods.  In vitro studies have previously used the change in dry mass[22], or 

spectroscopic methods, such as the hydroxyproline assay[49] to determine the 

concentration of solubilized collagen.  Mechanical properties have also been used to 
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determine the integrity of the scaffold.  Changes in tensile strength[22], compressive 

modulus[50] and stress relaxation[51] have all been previously reported. 

In vivo studies have described histomorphometry techniques to measure the extent 

of degradation.[52]  This is performed by measuring the area of each of the different 

regions on a slide, such as regions occupied by the implant material versus new tissue, 

blood vessels or empty space.  As the matrix degrades, the area it occupies in a randomly 

chosen FOV should decrease.  This analysis is usually carried out with the aid of a 

computer.  Excised collagen matrices have also undergone mechanical tests to assess the 

degradation.[53]  Alternatively, fluorescently-labeled antibodies targeted against the 

particular collagen species that the implant is made from can be used to quantify the 

amount of fluorescence and persistence of an implant.  However, histomorphometry 

provides quantitative data in an easier, more efficient manner than fluorescent imaging of 

tissue sections. 

2.2.2 Responses to Matrices 
The development of a noninvasive technique to monitor implants requires model 

implants with predictable and varied ranges of tissue responses for detecting a difference 

using MRI.  It will also allow a large range of data histological data to be correlated with 

the MRI measurements.  The different responses to collagen matrices are based on the 

different fabrication treatments they undergo prior to implantation.  This section will 

briefly review how the different treatments affect the biological response. 

Crosslinking has a significant effect on the tissue response to collagen matrices.  

Glutaraldehyde crosslinking has been shown to produce a greater initial inflammatory 

response compared to EDC crosslinking[28] and diisocyanate.[28,40]  However, cellular 
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infiltration of fibroblasts towards the center of the sponge at longer time periods was 

shown to be decreased as a result of glutaraldehyde crosslinking.  Cellular infiltration and 

inflammatory response is greatest in uncrosslinked sponges.[54]  Furthermore, increasing 

the glutaraldehyde crosslinking times were shown to decrease the initial inflammatory 

response.[54]  This is caused by the masking of antigens by crosslinks.[55]  EDC 

crosslinking produces samples with equivalent resistance to proteolytic attack, while 

improving the biocompatibility and amount of tissue ingrowth over glutaraldehyde 

treated samples.  The degradation rates for these crosslinking techniques were all found 

to be slower than uncrosslinked sponges. 

The incorporation of glycosaminoglycans (GAGs) and growth factors is another 

frequently used method to improve the tissue response.[41,42,37,13,56]  In a study performed 

by Pieper et al.[37] the addition of heparan sulfate and chondroitin sulfate was found to 

reduce the transient inflammatory response, increase infiltration by fibroblasts and 

increase the rate of new tissue deposition over uncrosslinked sponges and sponges 

crosslinked without GAGs.[37]  The results from this study are summarize in Table 1 . The 

presence of GAGs also decreased the degradation rate, preserving the porous structure 

compared to sponges with the same crosslinking density.  The sustained release of basic 

fibroblast growth factor has also been shown to increase new production and increased 

angiogenesis.[57]
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Table 1: Tissue response to glycosaminoglycans 
Cellular Events UnX EDC EDC+CS EDC+HS 
Inflammatory/immune 
cells 

++ +++ + ++ 

Fibroblasts/ECM 
deposition 

++ +++ +++ +++ 

Angiogenesis + + ++ +++ 

UnX = uncrosslinked, EDC = crosslinked using EDC carbodiimide, EDC+CS = EDC crosslinked with 
chondroitin sulfate, EDC+HS = EDC crosslinked with heparan sulfate.  Cellular events were scored as 
slight (+), moderate (++), and abundant (+++)  Table adapted from Pieper et al. [37]

2.3 MRI Overview 
Magnetic resonance imaging has emerged as a powerful tool in a variety of 

medical applications.  Its sensitivity to small changes in water environments and ability to 

probe tissues noninvasively has enabled it to become an extensively used technique.  The 

basic physical principles that give rise to a nuclear magnetic resonance (NMR) signal and 

how this is used to create an image are briefly explained here.  The basic types of images 

will also be discussed.  This section, adapted from Smith[58] and Haacke[59] describes the 

principles governing MRI to provide a basic, working knowledge of the technique as it 

applies to this project.  The reader is referred to other texts for a more thorough treatment 

of this material. 

2.3.1 Nuclear spin in a Magnetic Field 
Atoms with an uneven of number of neutrons or protons have a nucleus with a 

magnetic dipole arising from the unpaired spins of the nuclear particles.  A nucleus with a 

magnetic dipole can be considered analogous to a miniature bar magnet, with north and 

south poles, commonly represented as a vector.  These nuclei will interact with an 

external magnetic field, and are termed NMR active nuclei.  Commonly occurring NMR 

active isotopes include 1H, 14N, 23Na, and 31P.  The high abundance of 1H, simply a 
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proton, makes it a common atom to use for MR imaging, though it is possible to use other 

nuclei.[58]

When protons are placed within a large external magnetic field, the interaction 

between the external field and the nuclear magnetic fields causes the protons to align with 

the applied field.  When the protons are not aligned with the field (as during an 

experiment, when they have been excited), the interactions between the nuclear spin and 

the external magnetic field, lead to each proton precessing about the direction of the field.  

The angular frequency of this precession (ω0) is given by: 

(1) 00 Bγω =

Equation 1: Lamor equation 

where γ is the gyromagnetic ratio, a unique constant for each nuclei, and BB0 is the 

external magnetic field.  This precessional frequency is called the Lamor or resonance 

frequency.  For a proton, γ has a value of approximately 2.68 x 10  rad/s/Tesla.  The 

precessional frequency of a proton in a typical; magnetic field used in imaging is roughly 

within the frequency range used for radio waves. 

8

When a large number of protons are placed within a field, as occurs when a 

patient or specimen is inserted into the bore of a magnet, the protons align in the direction 

of the external magnetic field, by convention denoted as the z-direction.  Only two 

alignments are possible, parallel or anti-parallel to the magnetic field.  The parallel 

alignment has a slightly lower energy than the anti-parallel state, resulting in a greater 

number of nuclei in the lower energy state at equilibrium.  Most of the individual dipoles 

in one state will cancel with a proton dipole in the alternate energy state, but the slight 

excess of protons in the lower energy state will result in a very small net magnetization 
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aligned along the z-axis.  This quantity is called the spin excess and is used to generate 

the signal detected during NMR data collection. 

2.3.2 MRI Parameters and Their Physical Origins 
The basic NMR experiment to collect data involves perturbing a system subjected 

to a magnetic field from its equilibrium state by applying energy to the system.  As the 

system returns to equilibrium, the state of the system is measured as a function of time, 

by sampling at certain time points.  This is a broad simplification but serves illustrate the 

idea. 

At equilibrium, each proton has aligned with the magnetic field and the net 

magnetization (M0) is all in the z-direction represented by the symbol Mz (Mz = M0).  

There is no magnetization in the plane perpendicular to the magnetic field (Mxy = 0) at 

equilibrium, also called the transverse plane.  A radiofrequency (RF) coil is used to apply 

energy to the system and perturb it from equilibrium.  This is achieved by sending a 

current through the coil at a frequency that matches the precession frequency of the 

proton, hence creating resonance and achieving an efficient transfer of energy into the 

system.  By controlling the duration of the current, the net magnetization of the sample 

can by rotated a specified angle away from the direction of the field.  The hardware 

requirements for the coil, in order to match the frequencies and to achieve uniform 

excitation of the sample, are beyond the scope of this summary.  The system is then left 

to return to equilibrium.  During the restorative period, the same RF coil that was used to 

initially excite the system detects a current that is induced by the transverse 

magnetization as it returns to equilibrium. 
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The following sections will briefly describe the particular quantities that can be 

measured during an imaging session.  This will provide the reader with an introduction 

sufficient to understand the data that will be presented in this thesis. 

2.3.2.1 Longitudinal Relaxation 
The longitudinal relaxation time is a measure of the time it takes for the protons to 

return to equilibrium state after the system has been excited by a 90° pulse.  That is, a 

pulse which moves the net magnetization into the transverse plane such that Mz = 0 and 

Mxy = M0.  The interactions that cause the protons to relax back to their alignment in the 

z-direction are primarily due to environmental interactions and so longitudinal relaxation 

is often called spin-lattice relaxation.  As soon as the pulse is turned off, the transverse 

magnetization will begin to decay to zero and the longitudinal magnetization will recover 

to its equilibrium value.  Mathematically, the recovery of the magnetization in the z-

direction can be represented by 

⎟
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Equation 2: Longitudinal relaxation 
where time, t = 0 right as the pulse is turned off and T1 is the characteristic parameter that 

determines the rate of recovery of the longitudinal magnetization.  The T1 parameter can 

be thought of as the time it takes for the longitudinal magnetization to recover to 63% of 

its initial value. 

2.3.2.2 Transverse Relaxation 
In addition to the longitudinal relaxation, there is a faster relaxation process that 

occurs in the transverse plane.  This is sometimes referred to as in-plane dephasing.  

Initially, the protons are all aligned (phase coherent) immediately preceding the initial 
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pulse.  After this, the spins tend to “spread out” (diphase) due to variations in the local 

magnetic field caused by neighboring protons.  This leads to differences in the 

precessional frequencies that accumulate over time and tend to “fan out” the spins, thus 

reducing the net transverse magnetization which is the sum of all the individual 

transverse components (vectors of equal magnitude, but opposite directions will sum to 

zero).[59]  This is shown mathematically by Equation 3, where again, t = 0 as the pulse is 

turned off.  The T2 parameter can be thought of as the time it take for the transverse 

magnetization to decay to 37% of its original value, and is always less than or equal to 

the longitudinal relaxation. 
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Characteristic plots of the longitudinal and transverse relaxation processes are 

shown in Figure 6, where the T1 time is 400ms, and Figure 7, where the T2 relaxation 

time is 100ms.  The magnitudes of Mz and Mxy have been normalized. 

Equation 3: Transverse relaxation 

Figure 6: Longitudinal relaxation curve 
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Figure 7: Transverse relaxation curve 
 

2.3.2.3 Image Acquisition 
Images require that the electrical signals from protons at different locations within 

the specimen can somehow be mapped back to their locations when the image is 

reconstructed.  Each pixel within a picture has its location defined by a set of coordinates, 

usually (x, y), that specify a location in perpendicular directions.  In order for the data, 

essentially induced currents within the RF coil, to be mapped back to the location within 

the specimen that they originated from, magnetic field gradients superimposed on the 

external magnetic field encode the spatial position of each volume element into the 

frequency and phase of the signal.  Additional coils within the magnet apply a gradient to 

the magnetic field that serve to alter the frequency that the protons precess, based on 

Equation 1.  Additional gradients are applied for a short time in the perpendicular 
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direction to alter the phase of all the protons.  The third spatial dimension is controlled 

during the excitation, where the system is perturbed from equilibrium only in the slice of 

interest.  This is accomplished by matching the frequency of the current in the RF coil 

with the spins in the slice of interest.  Thus, when the data is collected, it can be resolved 

back to unique (x,y) coordinates (within a specific slice) in an image based on the 

frequency and phase of the data.  The Fourier transformation is used to process the signal 

collected in the RF coil and to separate it into its individual components. 

2.3.2.4 Image Weighting 
The two relaxation processes, longitudinal and transverse relaxation, occur 

simultaneously.  When collecting data, it is impossible to halt one type of relaxation, and 

only measure the other.  Thus, when data is collected, there is always a mixture of signals 

from the two processes.  Based on when the samples are taken, and the original pulse 

sequences used to excite the sample, the data can be collected in such a way that the 

contrast of the image is dominated by a single relaxation process.  This is termed image 

weighting.  Additionally, it is possible to collect diffusion weighted images.  This will be 

discussed in Section 2.3.2.5. 

There are two basic timings of the pulses that can be manipulated to achieve the 

desired image weighting: 

• TR interval (time between excitation pulse repetitions) 

• TE interval (time at which the signal is measured after the pulse, echo 

time) 

A T1 weighted image is acquired using a short TR and short TE, which serve to enhance 

T1 contrast and minimize T2 contrast.  T2-weighted images are obtained using long TR 
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and long TE values, which have the opposite effect.  A third type of image-weighting can 

be obtained using long TR and short TE values, which reduces both T1 and T2 contrast 

and gives a proton-density-weighted image.  This is useful in determining how much 

water is in the specimen. 

2.3.2.5 Diffusion Measurements 
Collection of MRI data usually employs constant field gradients to spatially 

resolve the data and to select the various slices of interest.  Pulsed-field gradients may be 

used to encode the data with molecular diffusion information.  When molecules move 

from one region to another, they experience different magnetic field strengths that change 

their precessional frequencies.  These changes in resonant frequencies lead to 

accumulation of phase shifts (both positive and negative) that serves to attenuate the 

overall signal.  Stationary molecules will not experience the accumulation of phase shifts 

and exhibit no signal attenuation.  Using this data it is possible to create diffusion-

weighted images (DWI) that show where there is greater movement of water molecules 

based on a reduction of the signal. 

Pulsed-field gradients can only be used to detect diffusion in the direction of the 

pulsed-gradient field.  Multiple sets of data, with different directional orientations of the 

pulsed-field gradient, can be combined to obtain an overall description of diffusion in all 

directions.  This is performed to create a map of the apparent diffusion coefficient 

(ADC).  This gives the researcher an idea of how freely the water molecules are moving.  

While there may be diffusion of other larger molecules, such as proteins, these are 

generally too slow to be detected using pulsed-gradient fields. 
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2.3.2.6 Contrast Enhanced Imaging 
The mechanisms through which protons transfer energy to their surroundings and 

thereby relax can be manipulated to significantly alter the relaxation times.  The exact 

principles by which this occurs are beyond the scope of this summary.  Alterations to the 

relaxation times are achieved through the use of MRI contrast agents.  These substances, 

when introduced at low, non-toxic concentrations, interact with the water molecules to 

accelerate the relaxation processes.  The transfer of energy from the spins into the lattice 

is made more efficient.  Image contrast is thereby increased, allowing for better image 

analysis in certain cases by allowing different tissues to be more clearly distinguished.  

The change in relaxation times can also be used to monitor the progression of the contrast 

agent through the tissue.  For example, if the agent is introduced intravenously, the blood 

vessels will experience the change in relaxation times first.  As it diffuses out the blood 

vessels into the surrounding cells, tissues with a greater vessel density will show on the 

image before tissues with a lesser blood supply.  The clearance of the contrast agent can 

also be used in a similar manner to characterize the tissues. 

2.3.3 MRI Implant Evaluation 
Previous studies have used MRI to investigate the changes in various biomaterials 

after implantation.  Constantinidis et al.[60] used MRI methodologies to monitor cellular 

distribution and metabolism of adult porcine islet cells and βTC3 cells encapsulated 

within alginate/poly-L-lysine/alginate beads both in vitro and in vivo.  They showed that 

diffusion-weighted imaging is most useful for locating the spheres within mice and that 

the metabolism of the cells can be monitored using NMR spectroscopy. 
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It has also been shown that changes in T2 relaxation times are sensitive to changes 

in the histological state of the poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) (a 

hydrogel) implants.  In this study, Traoré et al.[61] found that the T2 relaxation data could 

be fitted using a biexponential model after a certain amount of time within the animal, 

indicating heterogeneity within the implant.  This could be attributed to cellular 

infiltration creating distinct volumes within the implant, that could be distinguished using 

MRI, where slow and fast T2 relaxation times were associated with volumes containing 

few cells or many cells, respectively.  Other studies using NMR imaging and 

spectroscopy, as well as cell labeling, have characterized implants and tissue 

responses.[62,63,64]  Choi et al.[64] have used gadolinium-enhanced magnetic resonance 

imaging to study the fibrovascular ingrowth into polyethylene orbital implants.  They 

found that the area of fibrovascular tissue, as measured by histology and MRI, correlated 

very well. 

MRI is also extensively used in the clinical setting to evaluate the pathology of 

soft tissues.  T2-weighted imaging has been used in stroke[65] and tumors of various 

organs such as the heart,[66] pancreas,[67] and liver[68].  T1-weighted imaging is generally 

most useful to obtain information about the general anatomy as it provides good 

structural images of the various organs.  Diffusion-weighted imaging is often used in 

assessing multiple sclerosis[69] and in the imaging to tumors.[70-72]  The relationship 

between cellular density and MRI measurements of T2 and ADC has been studied 

extensively in tumors.[70,73,74]  These studies have demonstrated that cellularity can be 

monitored using these parameters.  Contrast-enhanced imaging is also used extensively to 

 27



www.manaraa.com

assess the vasculature of certain regions and to measure the angiogenesis of tumors.[75]  

This same approach can be used to measure the angiogenesis within the scaffolds. 

These studies, and many others, have examined the affects that physiological 

changes, which occur in disease states, have on the MRI measurements.  They 

demonstrate significant progress towards understanding how to collect and interpret the 

MRI data to obtain useful information that can guide clinical diagnoses and treatments.  

This body of work describes one of the first studies that applies these techniques to 

assessing tissue responses to implanted collagen scaffolds.  An MRI assessment of 

collagen scaffolds was closely correlated with histological findings to demonstrate that 

MRI can be used to monitor these implants using techniques similar to those in common 

use. 
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3 Hypothesis and Specific Aims 

We hypothesized that changes in tissue responses to implanted collagen scaffolds 

will correlate with changes in the MR images.  Specifically, quantitative analyses of 

cellular infiltration, tissue ingrowth, and vascularization of scaffolds will correlate with 

MRI measurements of T2 relaxation times, water apparent diffusion coefficients, and 

contrast agent uptake/clearance profiles within the implant.  The following correlations 

were tested: 

• Average T2 values and average cellular density 

• Average T2 values and average void area 

• Average ADC values and average cellular density 

• Average ADC values and average void area 

 

Specific Aim 1: Characterize in vitro scaffold degradation. 

Scaffolds were fabricated and modified to produce three different groups; 

uncrosslinked, crosslinked, and crosslinked in the presence of chondroitin sulphate to 

conjugate this glycosaminoglycan to collagen.  To measure the degradation rates, these 

scaffolds were treated with bacterial collagenase and the collagen degradation products 

were analyzed using a hydroxyproline assay. 

Specific Aim 2: Quantify cellular infiltration into the scaffold. 

Scaffolds were implanted into dorsal subcutaneous pockets of rats, harvested at 2, 

7, 14, 21, 28, 35 and 42 days, and histological sections were stained using Haematoxylin 

and Eosin as well as Masson’s Trichrome.  Cellular density as a function of depth within 

the scaffold was measured using automated image analysis software. 
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Specific Aim 3: Quantify vascularization of the scaffold. 

Using histological sections obtained from the explants described above, blood 

vessels within the scaffold were characterized using Masson’s Trichrome stained sections 

to determine the vessel density as a function of depth within the scaffold. 

Specific Aim 4: Quantify new tissue deposition within the scaffold. 

Using histological sections obtained from the explants described above, the void 

area remaining within the scaffolds were measured using Masson’s Trichrome stained 

sections, again as a function of depth within the scaffold. 

Specific Aim 5: Correlate histology and MRI data. 

MRI parameters were correlated with histological measurements of the same 

scaffold to determine whether correlations were statistically significant and to formulate 

specific algorithms or criteria that facilitate the interpretation of MRI measurements. 
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4 Materials and Methods 

This section contains a description of the procedures used to accomplish the body 

of work in this thesis.  All chemicals were obtained from Sigma Chemical Co, St. Louis, 

MO, unless otherwise specified.  Details of the MR imaging were summarized from 

Kandasamy.[76]

4.1 Scaffold Fabrication 
Collagen scaffolds were fabricated from fibrillar collagen extracted from bovine 

Achilles tendon (Sigma, St. Louis, MI).  A 1.6% (w/v) dispersion of collagen was 

prepared in 0.5M acetic acid and left overnight at 4°C.  The dispersion volume was 

doubled with cold distilled water (final collagen concentration 0.8 wt%) and blended in a 

water-cooled homogenizer for 30min at 4°C.  The dispersion was then degassed under 

vacuum and stored at 4°C.  Forty milliliters of the dispersion was placed in an aluminum 

weighing pan (70mm diameter) and frozen at -80°C.  Once completely frozen, the pan 

was placed in a freeze dryer (Virtis Advantage, Virtis, Inc., Gardner, NY), initially set at 

-45°C, and lyophilized overnight.  Punches of the lyophilized collagen sheet were made 

to produce disks of diameter 1.5 cm and thickness one cm, weighing approximately 

20mg.  Scaffolds were stored in a sealed desiccator at room temperature until used. 

Scaffolds were crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) 

carbodiimide (EDC) in the presence and absence of shark cartilage chondroitin 6-

sulphate (CS), according to previously described protocols,[37,26] to create differential 

tissue responses that would be detected by both MRI and histological analyses. Scaffolds 

were initially hydrated under vacuum in 50mM of 2-morpholinoethane sulphonic acid 

(MES) prepared in 40% (v/v) ethanol and adjusted using 1N NaOH/HCl to pH = 5.0 
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(referred to as MES buffer).  A crosslinking solution containing 0.4294g EDC and 

0.1473g n-hydroxysuccinimide (NHS) per gram of collagen scaffold to be crosslinked.  

Solution volumes and reagent masses were varied depending on how many samples were 

prepared.  To conjugate CS to the scaffolds during the crosslinking process, CS was 

added to the crosslinking solution to make a 1.2% solution (w/v, chondroitin sulphate to 

crosslinking solution).  Scaffolds were then incubated in the crosslinking solution and 

crosslinking was allowed to proceed for four hours at room temperature.  Scaffolds were 

then rinsed with 70% (v/v) ethanol (4 x 30 minutes) and sterile phosphate buffered saline 

(5 x 15 minutes).  The scaffolds were left in the final PBS rinse and stored at 4°C for no 

more than two days.  Three types of scaffolds were fabricated: uncrosslinked (UnX), 

crosslinked (EDC) and crosslinked in the presence of CS (EDC+CS). 

4.2 In Vitro Degradation of Scaffolds 
Scaffold degradation was investigated using previously described methods for 

enzyme treatment by Pieper et al.[26] and hydroxyproline measurement.[49] Scaffolds were 

rinsed in 0.1M Tris-HCl buffer containing 0.05M CaCl2 (pH 7.4).  A proteolytic solution 

was prepared by dissolving bacterial collagenase (Clostridium histolyticum, Calbiochem, 

San Diego, CA), at a concentration of 200 collagen digestion units (CDU) per ml, in the 

same Tris-HCl buffer.  All solutions were maintained at 37°C during the degradation and 

scaffolds were agitated on a gyratory mixer.  Samples (1ml) were taken daily, after 

centrifuging tubes at 2,000 rpm (Allegra 6R, Beckman-Coulter, Fullerton, CA) for five 

minutes, and replaced with fresh collagenase solution.  Each sample was stored frozen at 

-20°C until analyzed for hydroxyproline content.  Photographs were taken using a digital 

camera (Nikon D50, Nikon Corporation) at each sample time. 
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Hydroxyproline concentrations in the supernatant samples from degraded 

scaffolds were assessed according to the method of Woessner.[49]  A buffer (H-Pro buffer) 

was prepared by combining 12 ml glacial acetic acid, 50 g citric acid monohydrate, 120 g 

sodium acetate trihydrate, 34 g NaOH and bringing to a final volume of one liter (pH 

6.0).  Half-milliliter portions of the supernatant samples, and standard solutions of known 

collagen concentrations, were combined with a half-milliliter of 12 N HCl in glass test 

tubes sealed tightly with Teflon-lined screw caps (Fisher Scientific, Springfield, NJ).  

The samples were then hydrolyzed at 110°C for 18 hours in an oven.  Tubes were then 

cooled and the hydrolyzates were neutralized with 6 N NaOH containing Phenol Red.  

Fine adjustments were made to ensure the pH was between 6.0 and 7.0, corresponding to 

an orange/yellow color of the indicator.  Each hydrolyzate was brought to a total volume 

of seven ml using distilled water.  Portions of hydrolyzate (75 μl each) were placed in 

individual wells of a 96-well plate.  Then, 37.5 μl of 0.05 M of chloramine-T (sodium p-

toluenesulfonchloramide), prepared in H-Pro buffer, water, and methyl cellosolve, mixed 

in a ratio of 5:2:3, respectively, was added to each well and allowed to react for 20 

minutes at room temperature.  In the same order that chloramine-T was added, 37.5 μl of 

3.15M perchloric acid was added to each well and allowed to react for five minutes at 

room temperature.  In the same order again, 37.5 μl of 1.34 M Ehrlich’s reagent solution 

(p-dimethylaminobenzaldehyde dissolved in methyl cellosolve) was added to each well 

and mixed.  After the addition of Ehrlich’s reagent, the well plate was heated to 60°C in a 

water bath for 20 minutes.  The plate was then cooled in running tap water for five 

minutes and the absorbance of each well was read immediately at 561 nm using a 

SpectraMax 250 spectrophotometer (Molecular Devices, Sunnyvale, CA).  
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Concentrations were determined by comparing absorbance values against a linear 

standard curve.  When the data were plotted the values were adjusted to account for the 

dilution due to multiple samples.  Two scaffolds of each type were degraded, and thirteen 

supernatant samples were taken from the collagenase solution of each scaffold during the 

degradation. 

4.3 In Vivo Scaffold Assessment Using MRI 
All animals were handled and cared for in accordance with the NIH Guide for the 

Care and Use of Laboratory Animals[77] and all experimental protocols were carried out 

with the approval of the University of Massachusetts (UMASS) Medical School 

Institutional Animal Care and Use Committee (IACUC Protocol A-1759).  No surgeries 

were performed at Worcester Polytechnic Institute. 

Male Sprague-Dawley rats (six to seven weeks 

old, seven rats total) were anesthetized using 

pentobarbital and xylazine dosed at 40 mg/kg and 10 

mg/kg respectively.  A dorsal midline incision, 

approximately six cm long was made from the middle 

of the thoracic vertebrae towards the tail using a 

scalpel.  Six subcutaneous pockets (three per side 

lateral to the incision) were made using blunt 

dissection.  A hydrated, sterile-rinsed scaffold was 

placed in each pocket.  The type of scaffold placed at 

each location is shown in Figure 8.  Scaffolds were 

secured to prevent movement by passing 4-0 

EDC 

UnX 

EDC+CS 

Figure 8: Scaffold implant locations 
Adapted from NIH[78] 
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monofilament nylon (Ethicon, Summerville, NJ) through the scaffold and skin and tying 

two knots on opposite sides of the scaffold.  Animals were returned to their cages to 

recover from the anesthesia.  Once the animals were ambulant, they were returned to the 

animal housing facility. 

The rats were imaged two days after surgery, and every week after surgery up to 

six weeks.  For imaging, rats were anesthetized by placing them in a closed plastic 

container and administering 1.5% isoflurane delivered in 1.5 l/min of breathing quality 

air until the rat was fully sedated.  The level of isoflurane was reduced and adjusted as 

necessary during the course of imaging to maintain sedation.  The animal was placed in a 

custom-built animal holder to control its position within the bore of the magnet and its 

body temperature was maintained by circulating warm air. 

MR imaging was performed using a Bruker Biospin 2.0T/45cm imaging 

spectrometer and respiratory gating hardware and a custom-built surface coil that allowed 

all scaffolds to be imaged simultaneously.  T2-weighted images were acquired using a 

multiple spin echo pulse sequence (TR=2500 ms, TE = 12, 24, 36, 48, 60, 72, 84, 96, 

108, 120, 132, 144 ms, Nex = 2).  Images were oriented sagittally and each imaging slice 

was two mm thick. 

Contrast-enhanced T1-weighted MRI was performed using a spin-echo pulse 

sequence (TR/TE = 600/10 ms, Nex = 2).  A pre-contrast image was acquired, and then 

MAGNEVIST® (Gadolinium-DTPA, Bayer HealthCare) was administered at 

manufacturer’s recommended dosage of 0.1 mmol/kg via a tail-vein injection.  Post-

injection images were then acquired at regular intervals to monitor the uptake and 

clearance of the contrast agent. 
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Diffusion-weighted images were collected using a spin-echo, echo-planar imaging 

pulse sequence with diffusion sensitization applied along the read gradient at six b-values 

(b = 15, 60, 140, 390, 560, 760 mm2s-1).  Other acquisition parameters were TR/TE = 

2000/53, diffusion gradient duration δ = 4.0 ms, diffusion gradient separation Δ = 35 ms.  

These data sets were used to created apparent diffusion coefficient (ADC) maps. 

Rats were euthanized by intracardiac delivery of euthanasia solution 

(pentobarbital, 200mg/kg) at days 2, 7, 14, 21, 28, 35, 42.  Scaffolds were harvested by 

cutting the suture that secured it to the skin, taking care to preserve the capsule and 

surrounding tissue, and excising the scaffold with sufficient peripheral tissue to allow for 

viewing of normal, unaffected tissue in sections.  All scaffolds were then processed for 

histological analysis.  One rat was euthanized at each time point, for a total of 42 scaffold 

samples. 
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4.4 Histological Analysis 
Scaffolds were placed in tissue cassettes (Fisher Scientific, NJ) and fixed in 10% 

buffered formalin.  After rinsing in tap water, scaffolds were cut along the diameter of the 

scaffolds as shown in Figure 9.  At earlier time points, where the scaffold is much larger, 

a second cut, perpendicular to the first was sometimes necessary to divide the scaffold 

into quarters.  Photographs show gross morphological appearance of scaffolds at time at 

removal in Figure 10. 

A B A B

Embedded sponges 
Harvested scaffold 

Figure 9: Scaffold processing 

A) B)

Figure 10: Harvested scaffolds 
A) EDC scaffold harvested at 2 days.  B) Scaffold cut parallel to midline to facilitate embedding and 
sectioning. 
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After fixing and trimming, samples were dehydrated through a series of ethanol 

baths with gradually increasing ethanol concentrations.  Samples were cleared in 2-

butanol and embedded in paraffin wax at 60°C such that all the sections were cut in the 

same plane as the original midline incision made during the implantation surgery.  This is 

the same orientation used to acquire the MR images and allows for easier comparison 

between MR images and histological sections.  Sections were cut at 5 μm on a rotary 

microtome (American Optical) and placed on poly-l-lysine coated slides (Erie Scientific 

Company, Portsmouth, NH).  Sections were stained with modified Harris Hematoxylin 

and Eosin (Richard-Allen Scientific, Kalamazoo, MI) and Masson’s Trichrome (Sigma, 

St. Louis, MI) using standard procedures.  Slides were mounted with Permount® (Fisher 

Scientific, NJ) and imaged using a 10x objective on a Nikon E400 microscope, coupled 

with an RT Color Spot camera (Diagnostic Instruments, Inc Sterling Heights, MI).  Image 

capture was performed using Spot Analysis 4.0.9 software (Diagnostic Instruments).  A 

series of overlapping images were taken across the thickness of the scaffold, from the 

dorsal to ventral surfaces of the scaffold, including the surrounding fibrous capsule and 

tissue.  Images were then merged into a large, single mosaic using ImageJ (NIH, 

Bethesda, MD[79]) and the MosaicJ (Swiss Federal Institute of Technology, Lausanne, 

Switzerland[80]) plug-in. 

4.4.1 Thickness 
Total thickness of the implant, including the surrounding fibrous capsule, was 

measured using reconstructed mosaics of the H&E stained sections.  Dense, aligned 

connective tissue was used to identify the capsule.[81]  The change from dense connective 

tissue to looser, normal fascia was used to identify the margin between the capsule and 
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the surrounding tissue.  Within the capsule, the fibrous ribbons of the collagen scaffold 

were used to identify where the scaffold and capsule met.  From these sections scaffold 

thickness and capsule thickness were measured. 

4.4.2 Cellular Density 
Cellular density was measured 

using H&E mosaic images.  The 

contrast between cell nuclei stained 

blue/black and other structures 

stained pink/red allowed for easy 

identification of the nuclei.  Each 

mosaic was divided into 10 equally 

sized regions (see Figure 11) that 

spanned the entire thickness of the 

scaffold and included the capsule, but 

not the surrounding tissue.  As the 

implant changed size with 

implantation time, the size of each 

region changed, effectively 

normalizing to the thickness of the 

scaffold.  This ensured that an equal number of measurements were taken from each 

sample and allowed for comparisons between differently sized samples based on relative 

location within the scaffold.  The number of cell nuclei within each region was counted 

using semi-automated image analysis.  A macro was written for ImageJ to facilitate 

Figure 11: Region selection of an H&E stained cross-
section of an explanted scaffold 
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repeatable, consistent measurements in a time effective manner.  A schematic of the 

approach used in shown in Figure 12.  Each image was split into hue, brightness and 

saturation stacks.  The brightness stack provided the best contrast between nuclei and 

surrounding tissue based on the darker staining of the nuclei.  ImageJ commands were 

then used to subtract background image noise and automatically adjust the contrast and 

brightness.  The resulting image was then converted to a binary image by using the same 

threshold values for all images to isolate the dark regions (nuclei) of the image.  The 

same threshold values were used in all cases.  The “analyze particles” command was then 

used to automatically count the number of nuclei in the image.  For complete details, 

please see the appendix which shows the code used. 

A) B) D)C) 

Figure 12: Semi-automated image analysis of H&E stained region to count cells 
A ROI of an H&E stained section (A), was split into hue, saturation and brightness stacks.  The brightness 
stack (B) was thresholded (C) and analyze particles were used to count cells (D). 

4.4.3 Blood Vessel Density 
The number of blood vessels present in 

each sample was determined using regions 

taken from Masson’s Trichrome-stained 

sections, using the method described in Section 

4.4.2 to divide the scaffold into 10 equally sized 

regions (Figure 11).  Blood vessels were 

identified as circular structures larger than 8 μm 

Figure 13: Masson's Trichrome section 
used to count blood vessels 
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in diameter surrounded by cells enclosing an empty space or only showing red blood cells 

within the structure, Figure 13.  Occasionally, vessels were sectioned longitudinally; 

these were counted as one unless branches were visible.  In this case, each branch was 

counted as one vessel. 

4.4.4 Void Area 
Masson’s Trichrome staining was also used to measure the void, or blank, area of 

the scaffold.  This gives a measurement of the overall density of the scaffold that can be 

correlated with MRI measurements of ADC and T2.  The same method was used to divide 

the scaffold into 10 equally sized regions as shown in Figure 11. 

The void area of each region was measured and reported as a percentage of the 

total area.  A macro was written for ImageJ to ensure consistent, repeatable results in a 

time effective manner.  A schematic of the approach used in shown in Figure 14.  Again, 

the images were split into hue, saturation and brightness stacks.  The brightness stack was 

selected and the background image noise subtracted.  The image was then converted to a 

binary image using threshold values that isolated the light regions from the remainder of 

the image.  The percent of pixels that fell into the light category was measured.  For 

complete details please see appendix for the code used. 

A) B) D)C) 

Figure 14: Semi-automated image analysis of MT stained region to measure void area 
A ROI of an Masson’s Trichrome (MT) stained section (A), was split into hue, saturation and brightness stacks.  The 
brightness stack (B) was thresholded (C) and number of pixels thresholded were counted (D). 
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4.5 Correlation of MRI and Histology Data 
MR images were acquired and analyzed by Kandasamy.[76]  As part of the MRI 

analysis, scaffolds were divided into center and rim regions, as shown in Figure 15.  

These regions varied by implant and day on which the imaging was performed.  

Generally, the rim region consituted the outer fifth of the scaffold.  To correlate these 

measurements with histology parameters, edge and core regions were defined as the outer 

20% and middle 20% of the scaffold, respectively. 

Figure 15: MR ROI selection 
Contrast enhanced images of scaffold from Kandasamy,[76] showing how MRI 
ROIs were selected. 

 

Correlations between the MRI data and histology data were performed by 

comparing MRI measurements taken immediately before the rat was euthanized with the 

histological measurements for each scaffold.  Average scaffold values from MRI 

measurements of T2, apparent diffusion coefficient (ADC) and volume for scaffolds were 

plotted against histology measurements of average cell density, void fractions and 

scaffold thickness.  T2, ADC, cell density and void fractions were averaged for the whole 

scaffold.  Comparisons were made only in cases where histology and MRI data points 

were available for the same scaffold, reducing the total number of data points available. 
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5 Results 

5.1 In Vitro Scaffold Degradation 
Scaffolds were incubated in a proteolytic solution of bacterial collagenases to 

assess the effect the crosslinking treatment on the degradation of the scaffolds.  The 

progression of scaffold degradation is shown in Figure 16.  UnX scaffolds showed the 

first signs of degradation at 72 hours; by 96 hours they were noticeably fragmented 

(Figure 16D).  The UnX scaffolds had reduced to fragments by 264 hours.  In contrast, 

Figure 16: Scaffold degradation photographs showing scaffold degradation 
A), D), G) and J) show UnX scaffolds at 0, 96, 240, and 312 hours respectively.  B), E), H) and K) show 
EDC scaffolds at 0, 96, 240 and 312 hours respectively.  C), F), I) and L) show EDC+CS scaffolds at 0, 96, 
240 and 312 hours respectively.  For size reference, all scaffolds were photographed in 50ml conical tubes 
(approximately 30mm in diameter). 

A) 

D) 

G) 

J) 

B) C)

E) F)

H) I) 

K) L)

0 
hrs 

96 
hrs 

240
hrs 

312
hrs 

UnX EDC EDC+CS 
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the crosslinked scaffolds maintained their integrity until 240 hours (Figure 16H and I), 

and thereafter showed only slow and faint signs of structural collapse.  By 312, hours the 

crosslinked sponges had completely fragmented, Figure 16K.  Based on observations, it 

appeared that the EDC crosslinked scaffolds were slightly more resistant to degradation 

than the EDC+CS scaffolds and released fewer fragments into the solution at any given 

time point. 

Supernatant samples were taken every 24 hours, while the scaffolds were 

degrading, and analyzed for hydroxyproline content.  The results shown in Figure 17 

indicate that the UnX scaffolds degraded quicker than the crosslinked ones.  At all time 

points the UnX scaffolds had released more collagen into the solution.  The 

Figure 17: Plot of solubilized collagen released during degradation assay 
Collagen scaffolds were exposed to bacterial collagenase and measures of hydroxyproline were correlated to 
solubilized collagen, results from one experiment, n = 2. 
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hydroxyproline measurements do not show any difference between the EDC- and 

EDC+CS-crosslinked scaffolds.  The slight increased resistance to degradation of the 

EDC scaffolds based on observations of the structure and fragments, was not confirmed 

by the spectrophotometric measurement.  Care should be taken interpreting these results 

due to the small sample size. 

5.2 Histological Analysis 
Scaffolds were implanted into dorsal subcutaneous pockets of rats to evaluate 

tissue responses.  Rats were imaged using MRI and the scaffolds were harvested to assess 

cellular responses.  Scaffolds harvested at Day 21 were infected and not processed for 

further analysis.  Explants were stained with H&E and Masson’s Trichrome and mosaic 

images of the thickness were created.  The mosaic images, Figure 18,Figure 19 andFigure 

20, show H&E sections of UnX, EDC and EDC+CS scaffolds, respectively.  Masson’s 

Trichrome mosaic images, Figure 21,Figure 22 andFigure 23 show UnX, EDC and 

EDC+CS scaffolds, respectively.  All scaffolds showed an increase in cell number from 

the scaffold margin that gradually filled the entire thickness of the scaffold for all 

scaffolds by Day 14.  UnX scaffolds had a greater number of inflammatory cells than 

crosslinked scaffolds.  After 14 days, the majority of cells within the crosslinked 

scaffolds were non-inflammatory.  After 14 days the UnX scaffolds had degraded 

completely (Figure 18) while the crosslinked scaffolds persisted to the last time point, 42 

days (Figure 19F, and Figure 20F).  Scaffold thicknesses decreased with time after day 

14, for both crosslinking conditions, except for Day 42, where the scaffolds were thicker 

than those harvested at Day 35 (Figure 24). 
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Generally, UnX scaffolds had thicker capsules than crosslinked scaffolds at all 

time points.  At Day 2 there was very little evidence of a capsule (Figure 21A, Figure 

22A and Figure 23A).  Capsule thickness increased up to Day 14, and then decreased as 

scaffold became integrated with the tissue. At Day 28, there was only a thin capsule 

surrounding the EDC scaffolds (Figure 22D).  After this time point, the scaffolds had 

completely integrated with the surrounding tissue.  EDC+CS scaffolds showed no 

capsule at Day 28 (Figure 23D), indicating quicker integration with the surrounding 

tissue. 

The porous structure of the scaffolds was gradually filled with cells, connective 

tissue and blood vessels.  UnX scaffolds appeared to degrade faster than new tissue grew 

in.  In contrast, crosslinked scaffolds maintained their structure while the pores were 

filled by actively remodeling fibroblasts.  The pores of EDC and EDC+CS scaffolds were 

completely filled by new tissue deposition by 28 and 35 days respectively, as seen by the 

increased staining of blue structures in Figure 23 E) and Figure 23D), indicative of new 

connective tissue synthesis. 

The following sections provide quantitative analyses of changes in tissue 

responses that were measured as a function of scaffold crosslinking and implantation 

time. 
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Figure 18: Mosaic photomicrographs of H&E sections of UnX scaffolds 
Images show scaffolds at A) 2 days, B) 7 days and C) 14 days oriented with dorsal side up.  Dotted line denotes margin between scaffold and surrounding tissue.  
Scale bar = 500 μm. 
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Figure 19: Mosaic photomicrographs of H&E sections of EDC scaffolds 
Images show scaffolds at A) 2 days, B) 7 days, C) 14 days, D) 28 days, E) 35 days and F) 42 days oriented with dorsal side up.  Dotted line denotes margin 
between scaffold and surrounding tissue.  Scale bar  = 500 μm. 
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A) B) C) D) E) F) 

 

 

 

Figure 20: Mosaic photomicrographs of H&E sections of EDC+CS scaffolds 
Images show scaffolds at A) 2 days, B) 7 days, C) 14 days, D) 28 days, E) 35 days and F) 42 days oriented with dorsal side up.  Dotted line denotes margin 
between scaffold and surrounding tissue.  Scale bar  = 500 μm. 
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Figure 21: Mosaic photomicrographs of Masson's Trichrome sections of UnX scaffolds 
Images show scaffolds at A) 2 days, B) 7 days and C) 14 days oriented with dorsal side up.  Dotted line denotes margin between scaffold and surrounding 
tissue.  Scale bar  = 500 μm. 
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Figure 22: Mosaic photomicrographs of Masson's Trichrome sections of EDC scaffolds 
Images show scaffolds at A) 2 days, B) 7 days, C) 14 days, D) 28 days, E) 35 days and F) 42 days oriented with dorsal side up.  Dotted line denotes margin 
between scaffold and surrounding tissue.  Scale bar  = 500 μm. 
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A) B) C) D) E) F) 

Figure 23: Mosaic photomicrographs of Masson's Trichrome sections of EDC+CS scaffolds 
Images show scaffolds at A) 2 days, B) 7 days, C) 14 days, D) 28 days, E) 35 days and F) 42 days oriented with dorsal side up.  Dotted line denotes margin 
between scaffold and surrounding tissue.  Scale bar  = 500 μm.
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5.2.1 Thickness 
Scaffold thicknesses were measured using the mosaic images to quantify the 

change in size of the scaffolds to correlate with the MRI measurements of scaffold 

volume.  The results are shown in Figure 24.  These measures show an increase in 

crosslinked scaffold volume at Days 7 and 14, that is more marked for EDC+CS 

scaffolds than EDC.  After Day 14, the scaffold thicknesses decrease with implantation 

time, except for Day 42 where there is a slight increase.  UnX scaffolds show greater 

capsule thicknesses than crosslinked scaffolds at Day 7 and 14, but not Day 2.   By Day 

28, there is only a very thin capsule present around the EDC scaffolds, approximately 50 

μm, while the EDC+CS scaffolds show no evidence of a capsule after Day 14. 
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Figure 24: Scaffold thickness as a function of implantation time 
n = 2 for all bars. 
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5.2.2 Cellular Density 
Cellular infiltration into the 

scaffolds was measured by counting 

the number of cells within regions 

taken across the thickness of the 

scaffold to determine the cellular 

density at various depths within the 

scaffold.  Region size was 

normalized to the total thickness of 

the scaffold to ensure an equal 

number of measurements were 

taken from each scaffold, despite 

greatly varying sizes.  The results 

obtained for cellular density for the 

three types of scaffolds are shown in 

Figure 25. 

These plots show a general 

increasing trend in cell numbers 

with increasing time for all 

scaffolds.  Cellular density is 

initially high at the scaffold margins 

and increases in the core regions of 

the scaffold with longer Figure 25: Plots of cellular densities for UnX, EDC and 
EDC+CS scaffolds as a function of scaffold location and 
implantation time 
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implantation times.  Cell density at the margins of UnX scaffolds is higher than 

crosslinked sponges at 2, 7 and 14 days.  This is consistent with qualitative observations 

from Figure 18.  UnX scaffolds also show a faster increase in cellular density in the core 

regions compared to crosslinked scaffolds at Day 14. 

EDC scaffolds had cellular densities that were lower than UnX, but slightly 

higher than EDC+CS scaffolds, particularly at Day 2.  This trend continued until Day 35, 

where the EDC+CS showed a relatively homogenous distribution of cells, whereas the 

EDC scaffolds still had a markedly reduced density at the core regions on Day 35.  By 

Day 42, the cellular densities of the two crosslinked scaffolds were similar, with the 

EDC+CS scaffolds having fewer cells on the ventral side of the scaffold.  Besides this 

one case, the cellular infiltration appears to occur at a similar rate from both directions 

into the scaffold, resulting in a mostly symmetrical distribution of cells at any given time 

point. 
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Figure 26: Core and edge cell density 
Each point is an average of outer and middle 20% of scaffold (4 measurements per data point, n = 2) 

The cellular densities of the edge and core regions (20% of total scaffold 

thickness for each region were compared for various scaffolds), and the results are shown 

in Figure 26.  This figure shows more clearly the increased cell density at the scaffold 

edges, compared to the core regions.  The steady increasing trend of cells at the core of 

the scaffold is also observed, with core regions exceeding the cell density of the edge by 

Days 14 and 42 for UnX and EDC+CS scaffolds respectively.  EDC scaffolds show equal 

cell densities at Day 42.  Cellular densities at the edge of the crosslinked scaffolds 

decreases between day 7 and 14.  Again, UnX scaffolds show higher cell numbers than 

both crosslinked scaffolds and EDC scaffolds had marginally higher cell densities than 

EDC+CS scaffolds.  By Day 35, there is very little difference in cell density between the 

edge and core regions of the scaffolds. 
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5.2.3 Blood Vessel Density 
Angiogenesis within the 

scaffolds was measured by counting 

the number of blood vessels within 

regions, across the thicknesses of the 

scaffolds using the Masson’s 

Trichrome mosaics.  The results 

obtained are shown in Figure 27. 

No blood vessels were seen at 

Day 2 in any of the scaffolds.  At 

Day 7, UnX showed the greatest 

vascularity, which reduced by Day 14 

at the margins.  No blood vessels 

were seen in the center of the UnX 

scaffolds at any time point. 

Crosslinked scaffolds showed 

an increase in blood vessels with 

implantation time.  At Day 28, there 

were more blood vessels in the 

EDC+CS scaffolds than in the EDC.  

By Day 28, there were still regions of 

the EDC scaffold that did not contain 

any blood vessels.  However, at Day 
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Figure 27: Blood vessel densities for UnX, EDC and 
EDC+CS scaffolds as a function of scaffold location and 
implantation time 
For all pl ts n = 2 o
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42, there were a remarkable number of blood vessels at the center of the EDC scaffold.  

All regions of the EDC+CS scaffolds showed evidence of blood vessels by Day 28.  By 

Day 42, there was a somewhat homogenous distribution of blood vessels within the 

EDC+CS scaffolds. 

Vessel densities for edge and core regions were plotted in Figure 28.  There was a 

general increasing trend for blood vessels in both edge and core regions for all scaffold 

types with increasing implantation time.  UnX scaffolds only showed blood vessels at the 

edge of the scaffold, whereas crosslinked vessels showed steadily increasing vessel 

densities throughout the scaffold.  The EDC+CS scaffolds showed higher vessel densities 

at both the edge and center compared to EDC scaffolds for most time points.  However, 

no blood vessels were seen at the center of the EDC+CS scaffolds at Day 42.  Both EDC 

and EDC+CS scaffolds showed a decrease in vessel density between Days 35 and 42. 

Figure 28: Core and edge vessel density 
Each point is an average of outer and middle 20% of scaffold (4 measurements per 
data point, n =2) 
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5.2.4 Void Area 
The void area fraction of each 

scaffold was measured to quantify the 

overall tissue ingrowth into the 

scaffolds.  Figure 29 shows the void 

area percentages for all scaffold types 

as a function of implantation time and 

scaffold location. 

All scaffolds show a decrease 

in the void fraction with increasing 

implantation time.  At early time 

points, void areas were lower at the 

edges of the scaffolds, compared to the 

central regions, with a fairly 

symmetrical profile.  At Days 28 and 

35, this profile had reversed itself in 

the EDC+CS scaffolds, with greater 

void areas at the edges. 

UnX scaffolds showed a 

reduced tendency to become filled and 

maintained a steeper gradient between 

the edges and central regions Figure 29: Void area fractions for UnX, EDC and 
EDC+CS scaffolds as a function of scaffold location 
and implantation time 
For all plots n = 2 
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compared to the crosslinked scaffolds, where the profile had flattened considerably even 

by Day 7. 

EDC+CS scaffolds reached a minimum void area by Day 28 in the central regions 

that persisted until Day 42.  EDC scaffolds only reached the same level by Day 42, 

whereas UnX scaffolds never reached this minimum. 

Figure 30 shows the void area fractions of the edge and core regions of the 

scaffolds as a function of scaffold type and implantation time.  This plot shows the same 

decreasing trend for all scaffold types at the edge and core regions.  UnX scaffolds have 

lower void fractions in the core regions compared to the core regions of crosslinked 

scaffolds, but they are never less than 20%.  The edges are likewise more filled.  Void 

fractions at the edge regions of EDC scaffolds increase slightly between Days 2 and 7, 

and remain unchanged until Day 14, before decreasing to levels similar to EDC+CS 

Figure 30: Core and edge void area fraction 
Each point is an average of outer and middle 20% of scaffold (4 measurements per 
data point, n = 2) 
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scaffolds.  EDC+CS scaffolds have a higher initial void fraction at Day 2 that persists 

through Day 14.  At later times, there is a marked decrease, particularly in the core region 

between Days 14 and 28.  After Day 28, there is little change in the void area, and there 

are only small differences between edge and core regions of the scaffolds. 
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5.3 MRI Correlations 
MRI measurements taken immediately before scaffolds were harvested were 

plotted against histology measurements of the same scaffolds in various combinations of 

parameters to explore the correlations between the two sets of data.  Scaffolds were only 

included if both MRI and histology data was available (21 scaffolds total).  Figure 31 

shows these results graphically and the statistical results are summarized in Table 2. 

Figure 31: Correlations between histology and MRI measurements 
Each point represents measurements taken from one scaffold, where the x-axis represents the MRI 
measurement and the y-axis represents the histology measurement.  A total of 21 scaffolds used for each 
scatter plot. 

The correlation between average cell density and average T2 values, (Figure 31A) 

shows longer T2 relaxation times are generally associated with lower cellular densities, 

and the correlation appears better at longer T2 values.  Void area and ADC are positively 
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correlated, as are void area and average T2 value.  The strongest correlation was seen 

between void area and T2 (Figure 31B). 

The Pearson product moment correlation for these combinations were computed.  

These results show that statistically significant (p < 0.05), linear relationships exist 

between T2 and cell density, ADC and cell density, T2 and void area, as well as ADC and 

void area (Table 2).  The best correlation is seen between void area and T2.  ADC and cell 

density have the weakest correlation. 

Table 2: Correlation statistics summary 
  MRI Parameter 
 n = 21 T2 ADC 

Cell Density r = -0.503 
p = 0.02 

r = -0.455 
p = 0.04 

H
is

to
lo

gy
 

Pa
ra

m
et

er
 

Void Area r = 0.666 
p < 0.0001 

r = 0.502 
p = 0.02 

 

To show the robustness of the linear regressions, plots of the residuals are shown 

in Figure 32 and were used to evaluate the quality of the fit.  Based on inspection, each 

shows a slight linear trend in the residuals.  This suggests that the model does not fit the 

data appropriately.  The residuals should be randomly distributed for a good fit.  The 

observations are plotted in order of increasing implantation time. 
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Figure 32: Residual values from correlations 

 

Difference between predicted and actual values for (A) Cell density and (B) Void area using T2, (C) Cell 
density and (D) Void area using ADC.  Long dash shows one standard deviation, short dash shows two 
standard deviations. 
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6 Discussion 

The goal of this study was to characterize the cellular response and remodeling 

processes that occur within collagen scaffolds after implantation and correlate these 

results with MRI measurements; working towards developing MRI methodologies that 

can be applied to noninvasively monitoring tissue responses to implants.  To study these 

relationships, the effects of crosslinking treatments and conjugation of GAG (CS) to 

collagen scaffolds were explored, as well as the in vitro degradation rates. 

6.1 In Vitro Scaffold Degradation 
The resistance of scaffolds to degradation, as measured by the amount of 

hydroxyproline solubilized when scaffolds were treated with bacterial collagenases, 

showed that the uncrosslinked scaffolds degraded faster than both crosslinked conditions.  

These observations are consistent with previous data on the effects of EDC crosslinking 

of collagen[22,32,82,83] and other materials.[25,84,85]  The addition of chemical bonds between 

collagen molecules increases the number of chain cleavages that must be performed by 

the enzyme to compromise the structural stability of the scaffold and liberate peptides.  

Despite the fact that EDC is a “zero-length” crosslinker and will only crosslink molecules 

that are within a few angstroms of each other, a sufficient numbers of bonds are formed 

to noticeably strengthen the material.  The EDC crosslinking reagent, 1-ethyl-(3,3-

dimethylaminopropyl)-carbodiimide, undergoes a reaction that effectively creates a 

peptide bond between two proteins.  This reaction would likely occur spontaneously 

under aqueous conditions, but at a much slower rate. 

Unexpectedly, there was no detectable difference in the degradation between the 

EDC and EDC+CS scaffolds.  The fact that the crosslinker itself is consumed in 
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conjugating the chondroitin sulfate to the collagen matrix, should reduce the number of 

available reaction sites to crosslink collagen molecules.  Previous research has indicated 

that this is indeed the case and lower resistances to degradation are obtained when CS 

was incorporated, but this was not a statistically significant difference.[86]  In a separate 

study, a secondary crosslinking step attached the CS, after first crosslinking the collagen 

matrix itself.[26]  This resulted in collagen-CS matrices that were more resistant to 

degradation than matrices crosslinked once with EDC alone. 

6.2 Histological analysis 

6.2.1 Thickness 
Scaffold thicknesses generally showed a decreasing trend with increasing 

implantation time regardless of crosslinking technique.  This result is consistent the 

expected outcomes.  The wound environment created by the surgery and the associated 

inflammatory response to both the surgery and the foreign material, as well as the 

continuous remodeling processes that occur within the rat once the inflammation has 

resolved, all involve the release of proteolytic enzymes that serve to degrade the collagen 

scaffolds.[10]  The initial inflammatory response, minutes to hours after the scaffold has 

been implanted, involves the release of non-specific lysosomal proteases and oxygen-

derived free radicals from damaged cells and neutrophils that degrade most protein 

materials, including potentially infectious microbes.  Later in the inflammatory response, 

macrophages secrete neutral proteases that further degrade the scaffold.[87]  After the 

inflammatory response, normal tissue remodeling processes involving the regulation of 

very specific matrix metalloproteinases (MMP) by tissue inhibitors of metalloproteinase 

(TIMP), cause the decrease in scaffold size.  Collagenase MMPs, such as MMP-1,-8,-
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13,and -18 have all been show to act on collagen substrates to breakdown these 

proteins.[88]  While these enzymes are very substrate specific, the structural homology of 

collagen types between species allows the native rats enzymes to still use the bovine 

collagen as a substrate.  Overall, the degradation rates appeared to be slightly faster 

compared to Pieper et al., the where the scaffolds were still present after 10 weeks.[37]

The scaffold thicknesses, even at Day 2, were greatly reduced from the initial 

thickness of approximately 1 cm.  This is primarily due to the compressive forces placed 

on the scaffold by the surrounding tissue, namely the skin.  The compressive modulus of 

these materials is very low and has been reported to be on the order of 1kPa and 150Pa 

for EDC+CS and uncrosslinked scaffolds, respectively.[29]  The presence of CS was also 

associated with a slight increase in thickness.  This can be explained by the fact that 

hydrophilic charge groups on the surfaces of the GAG are responsible for increased water 

content in cartilage based on the electrostatic forces that cause water molecules to arrange 

in shells around the long GAG chains.[89]  These same electrostatic forces would lead to a 

slight swelling of EDC+CS scaffolds compared to EDC  and uncrosslinked scaffolds. 

The thicknesses of the capsules surrounding UnX scaffolds were usually much 

thicker than those surrounding the crosslinked scaffolds.  This is thought to be due to the 

increased release rate of protein fragments over the crosslinked scaffolds that the 

inflammatory cells respond to that increases the cellular activity to isolate the implant.[87]  

Furthermore, crosslinking has been shown to reduce the immunogenicity of collagen, [7] 

which may also be a contributing factor at time points after 2 days. 

The MRI measurements of crosslinked scaffolds indicated an increase in volumes 

for all scaffold types at Day 7.  This is consistent with the thickness measurements in this 
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study.  At Day 14, the crosslinked scaffolds had returned to values close to their initial 

volume, and showed a decreasing trend at later time points.  The same decrease was 

observed in the scaffold thicknesses of the crosslinked sponges, except for scaffolds 

harvested at Day 42.  EDC+CS scaffolds were generally thicker than EDC at all time 

points except Day 2, however, EDC scaffold volumes were higher than EDC+CS.  The 

thickness measurements are also influenced by the various processing steps (fixing, 

embedding, sectioning) that the scaffolds go through before they are placed under the 

microscope.  Sectioning artifacts, such as separation of tissue layers or compression, may 

also have added variability to the data. 

6.2.2 Cellular Density 
Cellular density within the scaffolds was measured as a function of location with 

the scaffold by counting the number of nuclei present within ROIs.  The uncrosslinked 

scaffolds showed greater cell density at the edges of the scaffold than the crosslinked 

scaffolds at the three time points they were harvested (2, 7, and 14 days).  This result is 

thought to be part of the same increased inflammatory response that contributed to a 

thicker capsule.  Pieper et al. also reported a decrease in cell density for crosslinked 

scaffolds between 2 and 4 weeks that was not observed in this study.[37]  A qualitative 

change was observed in the predominant cell type present in the crosslinked scaffolds, 

from inflammatory cells to fibroblasts with increasing implantation time.  The change in 

the cell population is expected to reduce the total cellularity, but this was not observed. 

Cellular migration into the scaffolds and the establishment of a homogenous cell 

population occurred in the EDC+CS scaffolds sooner than in the EDC.  These results are 

consistent with other reports of improved tissue ingrowth and cellular response of 
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collagen-GAG matrices over unmodified collagen.[33,34,90-92]  The cells also had further to 

infiltrate as the EDC+CS were slightly thicker, at all time points.  The exact mechanism 

by which CS improves cellular infiltration is still not clear.  Explanations include the 

binding of CS to a wide range of proteins (proteases, growth factors, other ECM 

components, morphogens); either sequestering them or presenting them to the cells, 

resulting in changes of cell behavior.[35]  The variations in GAG structure and the 

multitude of proteins with which they interact make their full characterization difficult.  

The binding of CS to basic fibroblast growth factor (bFGF) has been shown to play a role 

in the binding of bFGF to the surface receptors on the cell surface that actually lead to a 

change in cell function.[93]  This could be occurring with any number of endogenous 

growth factors.  As a natural part of the normal ECM, it is expected that cell function and 

biocompatibility would be improved by the presence of CS. 

The metric for cellular density used in this study is based on total cellularity and 

does not take into consideration the type of cell present.  The population sizes of 

neutrophils, macrophages, leukocytes, giant cells and fibroblasts, as well as the relative 

numbers of each type of cell, are considered important when evaluating the overall 

biocompatibility of a material.[39]  However, for the purposes of this study, total cell 

populations are considered suitable because conventional MRI is not able to distinguish 

differences in cell population.  There has been some investigation into using 1H NMR 

spectroscopy to distinguish between types of cells based on differences in cell 

metabolites, but this work is beyond the scope of this thesis.[94]

MRI measurements of T2 values of the scaffold showed regions of short and long 

T2 at Days 2, 7, and 14 for all scaffolds.  The long T2 values, observed in the core regions 
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of the scaffolds, gradually decreased with implantation time until they were 

indistinguishable from the short T2 regions.  This is consistent with cellular infiltration 

and tissue ingrowth into the scaffolds and the establishment of a homogenous cell 

population.  The average T2 values for all scaffolds decreased until Day 21, at later time 

points they remain relatively constant.  ADC measurements showed a similar decrease up 

to Day 21, and then remained constant at later time points, corroborating the T2 

observations. 

6.2.3 Blood Vessel Density 
EDC+CS scaffolds showed the greatest development of a vascular network, and 

had the greatest vessel density at the end of the study.  These observations are consistent 

with expected results and previous reports of improved angiogenesis in the literature 

when chondroitin sulfate or other GAGs are present.[37,95,96]  The increased number of 

blood vessels at the margins of UnX scaffolds was associated with elevated cell densities.  

The angiogenic potential of uncrosslinked collagen scaffolds, while slightly greater at the 

edges than crosslinked sponges, is not particularly remarkable given its instability and 

compared to what can be achieved by various modifications, such as the incorporation of 

growth factors[97].  The higher cell densities result in the release various chemotractants 

and cytokines at greater levels than other scaffolds, leading to the establishment of a 

vascular network.  However, the scaffold degraded before this process was complete, and 

angiogenesis was not observed in the core regions of these scaffolds. 

Following the same trend as cell density, the blood vessel density generally 

increased with implantation time, and progressed from the margins towards the center of 

the scaffold.  Pieper et al. also observed the steady increase in the number of blood 
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vessels,[37] except between 4 and 10 weeks, where they observed a decrease in the 

number of blood vessels.  These scaffolds were not harvested at 10 weeks, but a decrease 

in vessel density was seen at both the edge and core region of the crosslinked scaffolds, 

between Days 35 and 42.  This may be explained in part by an increase in vessel size as 

they become more mature within the implant.  Tiny capillaries eventually remodel to 

create larger vessels, reducing the total number of vessels, but not the amount of blood 

delivered.  As blood vessels were measured here, no consideration was given to the size 

of the vessels. 

The methods used to count blood vessels and generate data regarding the 

angiogenesis within the scaffolds, while it was applied consistently to allow comparisons 

between scaffold types, is not consistent with densities achieved in other collagen based 

implants.  Generally, the results shown here are much lower than what has been 

previously reported for similar implants.[95,98]  This may in part have to do with the 

detection method used to identify blood vessels.  The shape and size of blood vessels 

vary greatly, and the actual shape observed in the microscope slide is further altered by 

the relative orientation of the vessel to the sectioning plane.  Other studies have 

sometimes used immunohistochemistry to positively identify certain proteins that are 

found only within blood vessels, such as collagen-IV, CD31, or von Willebrand factor.[44]  

This would remove the dependence of the measurement on the shape and size of the 

vessel.  While this has probably led to an underestimation of the total vascularity of these 

implants, the changes in blood vessel density and the relative amounts are accurate. 

MRI measurements of blood flow in the scaffolds were performed using serial 

contrast-enhanced MRI to measure the time to maximum enhancement (time-to-peak, 
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TTP) and the time for the maximum enhancement to decrease to half of its peak value 

(T1/2).  These results showed that blood flow in the center of the scaffolds increased with 

increasing implantation time, consistent with the observed increase in vessel density.  

Crosslinked scaffolds had longer TTP and T1/2 values than uncrosslinked scaffolds, 

suggesting reduced flow and lower blood vessel densities, opposite to the histology 

observations.  However, these MRI measurements do not account for the shorter 

diffusion distances in the uncrosslinked scaffolds, due to their smaller size, which may 

explain this discrepancy. 

6.2.4 Void Area 
The void area of all scaffolds was found to decrease with postoperative time.  

This finding is consistent with expected results and previous studies that have shown 

collagen implants to gradually be filled with natural tissue.[10]  However, the correlation 

between tissue ingrowth and void area is not seen in the literature to the best of the 

author’s knowledge.  Void area measurements may be considered the inverse of tissue 

ingrowth, except for the scaffold material present in the ROI.  The implants are initially 

very porous (>90%)[15] and as they are remodeled and incorporated into the subcutaneous 

fascia, these pores are filled by the deposition of new ECM, angiogenesis and increasing 

cellular densities.  The degradation of the implant also leads the breakdown of struts that 

maintain the individual pore volumes as the scaffold is remodeled. 

EDC+CS scaffolds were completely filled with ECM and cells by Day 28, while 

the EDC scaffolds only showed similar filling by Day 35 and UnX scaffolds did not fill 

completely by Day 14.  According to Pieper et al, the EDC+CS scaffolds still maintained 

their open porous structure at 10 weeks.  This discrepancy could be due to a number of 
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factors.  One possible explanation could be that the rats used in this study were much 

younger and their higher metabolisms/growth impacted the remodeling process. 

A reversal in the gradient direction in crosslinked scaffolds, from low-to-high to 

high-to-low, when comparing edge to core void areas at early and late time points, 

respectively, is in part due to the initial formation of a dense capsule that is eventually 

remodeled during the tissue integration process.  The final densities at the center of the 

crosslinked scaffolds were greater than the density of normal, homeostatic tissue. 

These results for void areas are consistent with the measurements of cellular 

densities and blood vessels, which all capture different aspects of the remodeling process.  

The consistency between all three measurements provides strong evidence supporting the 

conclusion that better tissue response and ingrowth is observed in the EDC+CS scaffolds 

compared to the other two conditions. 

T2 and ADC measurements of the crosslinked scaffolds remained relatively 

constant at time points after 21 days, as observed in the void area measurements, showing 

good agreement between the two analysis modalities.  Uncrosslinked scaffolds generally 

have lower void areas than crosslinked scaffolds, which was reflected in the lower ADC 

and T2 values of these scaffolds. 

6.3 MRI Correlations 
The correlations between histology measurements of cellular density, void area, 

and scaffold thickness against MRI measurements of T2, ADC, and scaffold volume show 

that there is a relationship between the two analysis modalities.  The strongest correlation 

was seen between the average void areas and water T2 relaxation times.  This result 

makes sense, given that the T2 value depends heavily on the ratio between free (bulk) 
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water molecules and bound water molecules.  The binding of water to soluble proteins, 

cell membranes, and structural proteins all reduce the measured T2 value.  The void area 

is directly related to the amount of material available to bind water. 

Attempts to use multiple linear regressions were unsuccessful.  Presumably, using 

more than one MRI parameter to predict a histological measurement may give a better 

result as changes in the physiological state would influence all MRI parameters to some 

extent.  However, the MRI parameters themselves are usually highly correlated.  For 

example, short T2 values are usually associated with slow ADC values.  When 

performing multiple linear regressions, it is necessary to have no relationships between 

the independent variables.  The slight linear trend in the residual values suggests that 

there is some dependence on implantation time that is not accounted for, or that a simple 

linear regression is not the most appropriate model.  However, previous studies 

documenting the relationship between cellular density and ADC have used simple linear 

regressions.[73,74]

The relationship between total cellularity, T2, and ADC values has been well 

documented in the literature.[72-74,99,100]  Based on these previous results, it is expected 

that the correlations between the histological and MRI data in our study would be 

stronger.  For example, one study reported a correlation coefficient of r = -0.71 between 

cell density and ADC in tumors. [74]  In the present study, the differences in spatial 

resolution between the two analysis modalities may have also contributed to the weak 

correlations.  The histological sections were five micrometers in thickness, whereas each 

MRI slice was one millimeter thick.  This resulted in under-sampled histology data 

relative to the MRI data; which analyzed and averaged the whole volume of the scaffold.  
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While the scaffolds are assumed to be relatively homogenous in the direction 

perpendicular to the plane of the images, particularly in the central regions, this was not 

verified using multiple histology slices.  Future studies should increase the number of 

histological sections analyzed per MRI slice to better correlate that data distributions 

associated with the sampling frequencies. 

These correlations would also be improved by better co-registering the two data 

sets.  This histological analysis samples a narrow region from the central MRI slice for 

each scaffold.  Instead of comparing an average cellular density, computed by averaging 

across the thickness of a section, to an average T2 value taken over the entire scaffold, it 

would be better to compare just the central region of an MRI slice with the histology 

section analyzed.  The measurements from the binned histology regions could be 

averaged to cover the same spatial distance as an MR image pixel.  Comparisons could 

then be made on a pixel by pixel basis.  This would account for heterogeneity across the 

thickness of the scaffold and lead to better correlations. 
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7 Future Work 

The statistically significant correlations between that two analysis modalities 

show that MRI can be used to faithfully monitor the remodeling of collagen scaffolds.  

The conclusions drawn from this study would be greatly strengthened by repeating the 

experiments to obtain independent histology samples at each time point.  The differential 

tissue responses would be confirmed and the differences between the scaffolds can be 

statistically confirmed.  This would also create a more complete histology dataset for 

more accurate correlations with the MRI dataset.  Furthermore, using 

immunohistochemistry to positively identify blood vessels will lead to a more accurate 

measurement of the vascularity of the implants. 

The differential tissue responses that were obtained by the various crosslinking 

treatments and conjugation of chondroitin sulfate to the scaffold could be further widened 

by implanting scaffolds with other treatments.  Changing the GAG used to heparin sulfate 

or some other GAG would produce varying cellular responses.  The incorporation of 

growth factors, such as bFGF[101] and VEGF[102] has also been shown to greatly alter the 

tissue response.  These would both allow further histology and MRI data to be collected 

for correlations, advancing the understanding of how the two analysis modalities relate to 

each other. 

The void area correlates well with T2 values, however, in terms of physiology, 

void area is not a commonly used metric.  Usually, total collagen content or new collagen 

deposition is measured in scaffolds to determine how well the implant is integrating with 

the host tissue.  Using immunohistochemistry to stain for specific types of rat collagen 

(types I and III) within the bovine collagen scaffold will provide more data about how the 
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cells are responding.  Large amounts of new collagen synthesis would suggest greater 

biocompatibility and a favorable cellular response.  Related to this, bovine collagen 

antibodies would provide a better metric for scaffold degradation.  Measuring the 

changes in actual material is better than measuring the size when multiple processes 

occur within that space. 
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8 Summary 

This study has characterized the varying tissue responses observed when collagen 

scaffolds, crosslinked with EDC alone or in the presence of chondroitin sulfate, are 

implanted into dorsal subcutaneous pockets of rats and these data are correlated with 

MRI assessments of the scaffolds.  The improved biostability of crosslinked scaffolds led 

to greater persistence of these scaffolds compared to uncrosslinked scaffolds.  The 

addition of CS further increased the biostability of the scaffold.  Greatest cellular density 

was observed in uncrosslinked scaffolds at Day 14.  Crosslinked scaffolds took longer to 

populate with cells, and reach similar cellular densities after 35 days.  An increased 

inflammatory response was thought to contribute to the greater cellular densities in 

uncrosslinked scaffolds, and was associated with a thicker capsule surrounding the 

implants.  Measurements of blood vessel density showed the establishment of a vascular 

network within the EDC+CS scaffolds at 28 days and 35 days for the EDC scaffolds; 

indicating faster integration with the surrounding tissue is achieved by conjugating CS to 

the collagen scaffolds.  The void area observations showed scaffold pores were gradually 

filled by new ECM deposition.  EDC+CS scaffolds filled before the EDC scaffolds; again 

showing faster integration.  Uncrosslinked scaffolds did not fill with ECM and blood 

vessels as completely as the crosslinked scaffolds.  These observations are based on a 

limited number of samples, and care should be taken interpreting these data. 

Correlations between the MRI and histology measurements showed that 

relationships existed between cell density and T2 and ADC, and between void area and T2 

and ADC.  The strongest correlation was observed between void area and T2.  These 
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results demonstrate that MRI is sensitive to physiological changes that occur during the 

remodeling of collagen implants. 
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10 Appendices 

These appendices contain the ImageJ code that was used to consistently count cells 
and measure the void area fractions. 

10.1 Cellular Density 
macro "Cell Count [f5]"{ 
 run("HSB Stack Splitter"); 
 run("Subtract Background...", "rolling=50 white"); 
 run("Enhance Contrast", "saturated=0.5"); 
 run("Apply LUT"); 
 //run("Threshold..."); 
 setThreshold(0, 150); 
 run("Convert to Mask"); 
 run("Watershed"); 
 run("Analyze Particles...", "size=5-200 circularity=0.40-1.00 
show=Outlines display exclude summarize"); 
} 

10.2 Void Area 
macro "Void Fraction [f7]"{ 
 run("HSB Stack Splitter"); 
 run("Subtract Background...", "rolling=50 white"); 
 //run("Threshold..."); 
 setThreshold(250, 255); 
 run("Convert to Mask"); 
 run("Measure"); 
} 
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